Saturday, April 27, 2013

Cartoon Delta V Map

This is the second cartoon delta-v map I've drawn. Clicking on the above can give a larger version.

My first cartoon map gave a lot more space to EML5 and little to L1 or L2. I knew of L4 and L5 through fiction like Gundam which was probably inspired by Gerard O'Neill's The High Frontier. Since then I've become less interested in L4 and L5 and more interested in L1 and L2. This new map reflects that shift in focus.

I had heard of the Interplanetary Transport Network as well as Shane Ross, Martin Lo, and Edward Belbruno. But I knew almost nothing about the low delta V routes achieved with n-body mechanics. I had a vague notion that Lagrange points were involved but that was about it.

Then in 2009 I came across a thread in Nasa Space Flight entitled An Alternative Lunar Architecture. In that thread Kirk Sorensen wrote at length about EML2 and work done by Robert Farquhar. Farquhar's 3 body work was done in the late 1960's and early 70's, decades before Ross, Belbruno and other modern advocates of 3-body mechanics.

Here's one of the Farquhar graphics Sorensen posted to that thread:
This is a 9 day route from LEO to EML2 taking delta V of about 3.5 km/s. It's time reversible so .4 km/s can drop a payload from from EML2 to an atmosphere grazing perigee. There's a 4 day route to EML1 that takes 3.8 days. It was surprising to me that EML2 could be reached with less delta V even though it's on the far side of the moon.

It was in 2009 that I became more interested in L1 and L2.

There are routes between LEO and EML1&2 taking even less delta V, but these are time consuming. These are described by Andreas Stock's Investigation on Low Cost Transfer Options to the Earth-Moon Libration Point Region. 3.1 km/s seems to be the minimum between LEO for EML1 as well as EML2. In the map above I've depicted these routes with darker brown branches.

EML1 moves slower than an ordinary earth orbit at that altitude. An EML1 object nudged a little earthward will fall into an approximately 100,000 by 300,000 km elliptical orbit about the earth. A  .3 km/nudge suffices to send to it to a 36,000 km perigee where a 1 km/s burn can circularize the payload at geosynch orbit. A .7 burn can drop an EML1 payload to a LEO grazing orbit. If the LEO grazing orbit passes through the upper atmosphere, aerobraking can provide the 3.1 km/s needed to circularize at LEO.

EML2 moves faster than an ordinary earth orbit at its altitude. Nudged a bit away from the moon, a payload from EML2 will sail to a 1.8 million km apogee. The Sun Earth Lagrange 1 and 2 are 1.5 million kilometers from earth, so transfer from EML2 to SEL1 or 2 can be done with little delta V. Or an EML2 payload can sail through SEL1 or 2 completely out of earth's sphere of influence.

Nudge either EML1 or 2 a little moonward and they will fall into an approximately 5,000 x 60,000 km lunar orbit. Since the moon's rotating about the earth, a 60,000 km apolune can pass by both EML2 and EML1 over time. Thus it's possible to move between EML1 and 2 with very little delta V.

An object falling to a 300 km earth altitude from either EML1 or 2 will be traveling just a hair under escape when it reaches low altitude. Both EML1 and 2 make a complete circuit each 27.3 days so by timing your drop it's possible to choose longitude of perigee during a launch window. Plane changes are much less expensive at high altitudes so the velocity vector can be pointed in the right direction at perigee. Starting at EML2, injection into Mars or Venus Hohmanns can be done with around .9 km/s delta V (.4 km/sec to drop and a .5 km/s burn at perigee). On arriving at Mars, .7 km/s suffices to exit Hohmann for a 300 x 570,000 km Mars capture orbit.

A Near Earth Asteroid with a Vinfinity of 2 km/s or less can be dropped into an earth capture orbit using a lunar swing by. From there repeated lunar swing bys and little delta V can park the rock in high lunar orbit. Planetary Resources hopes to search for smaller rocks with their Arkyd orbital telescopes. If successful, they will likely find a multitude of rocks within .2 km/s of EML2.

Many NEAs are water rich and the cold traps at the lunar poles may have minable water deposits. So there are a number of potential propellent sources close to the earth-moon L1 and 2. Propellent sources high on the slopes of earth's gravity could break the exponent in Tsiolkovsky's rocket equation. This would give us mass fractions much easier to deal with. The highest delta V budget we'd have to endure is the 9.5 km/s from earth to LEO. Round trips between most other orbits would be in the neighborhood of 4 or 5 km/s.

Some notes on Venus: An earlier version of this map indicated delta V from Venus' surface to a capture orbit was 11.6 km/s. But then I came across an excellent delta V map by a fellow who calls himself Curious Metaphor.  In a discussion of his map, I was convinced Venus' thick dense atmosphere would make for a slower, steeper ascent from the planet surface. I've added 20 km/s gravity loss between Venus' upper atmosphere and surface. In Venus' upper atmosphere I've added a location labeled Landis Land. Named for Geoffrey Landis who noted there is a layer in Venus' atmosphere with earth like temperature and pressure. Moreover, a nitrogen/oxygen mix such as we  breath would be buoyant in Venus' CO2 atmosphere. Landis is a scientist as well as a science fiction writer. Some of his fiction takes place on the cloud cities of Venus.

Monday, April 15, 2013

Catching an Asteroid

In Capturing Near-Earth Asteroids around Earth, Hasnain, Lamb and Ross look at two delta Vs:
1) Delta V to nudge an asteroid's heliocentric orbit so the rock passes through the earth's sphere of influence.
2) Once in Earth's sphere influence, the delta V to make the hyperbolic orbit an elliptical capture orbit about the earth.

They don't try to find minimum delta V to reach an asteroid. Rather they try to determine whether low thrust ion engines can impart the needed delta V within plausible time frames.

I want to find asteroids that take the least delta V.

A good resource is JPL's NEO Close Approach page. To find orbits that already pass close to earth's sphere of influence, choose Nominal Distance less than or equal to 5 Lunar Distances. To find asteroids that don't need to shed too much velocity once in earth's sphere of influence, Sort by V-infinity:

Near the top of the resulting page is 2008 HU4's close encounter in 2015. Here is a picture of 2008 HU4's 2015 fly by:

To draw this picture I used position vectors generated by Horizon's Ephemeris page. I asked for position vectors in 3 day increments ranging from a month before to a month after the fly by:

Both the very helpful pages cited are JPL pages. The folks at JPL are worth their weight in gold, IMHO.

 Nudging 2008 HU4's Heliocentric orbit

Let's take a closer look at the close encounter:

The asteroid is a little ahead of the earth and moon. If it's orbit could be slowed by about a day, it'd be neck and neck with us. Increasing the perihelion speed by .02 kilometers/second would boost aphelion by 500,000 kilometers. This would increase the asteroid's orbital period by about a day -- from 420 days to 421 days.

Now that we have the asteroid running neck and neck with the earth and moon, we need to rotate the asteroid's line of nodes. This is where the asteroid's orbital plane intersects earth's orbital plane. The asteroid is above or below earth's orbit everywhere but at the line of nodes.

I want the asteroid to graze the moon's orbit. At about 6 degrees from the line of nodes, the moon is furthest from the sun, a full moon. Doing a plane change burn 90 degrees ahead of this can rotate the line of nodes where we want the close encounter. 2008 HU4's inclination is about 1.3º. The plane change needed is (1 - cos(6º)) * 1.3º. A .008º plane change would be more than enough to rotate the line of nodes 6º. At the region where we want to do the plane change, the asteroid's moving a little less than 30 kilometers/second. Delta V for plane change  is 2 * sin(.008º/2) * 30 kilometers/second = .005 kilometers/second.

The asteroid's a little further from the sun than the earth and moon. Decreasing the aphelion speed by .015 kilometers/second would shrink the perihelion by 300,000 kilometers. More than enough to get the asteroid to a moon grazing orbit.

So the delta V to nudge 2008 HU4's heliocentric orbit is (.02 + .005 + .015) kilometers/sec. About .04 kilometers/sec.

 Parking The Rock After It Enters Earth's Sphere Of Influence

Now for the second phase of capture. Now that we have the asteroid passing through our sphere of influence, we want it to stay. We need to get the hyperbolic velocity down below earth escape velocity.

2008 HU4's Vinfinity with regard to earth is about 1.4 km/sec. But by the time it reaches the moon's sphere of influence, it will have picked up some speed from earth's gravity.  Speed of a hyperbola is sqrt (Vescape2 + Vinfinity2). In the moon's neighborhood, earth escape velocity is about 1.4 km/s. So as the asteroid nears the moon's sphere of influence it's moving sqrt(1.42 + 1.4) kilometers/second. This is about 2 kilometers/second.

But the moon is moving about 1.02 km/s with regard to the earth. If the asteroid enters the moon's sphere of influence at 5 degrees from horizontal, it's speed will be about .97 km/s with regard to the moon.

When the asteroid enters the moon's sphere of influence, it's path can be modeled as a hyperbola  about the moon with a Vinfinity of about .97 km/s. Let's aim the asteroid so the hyperbola's perilune is about 1800 kilometers from the moon's center, about 70 kilometers above the moon's surface.

The turning angle is about 96º.

When this turned velocity vector is added to the moon's velocity vector, we have a speed under earth escape, about 1.19 km/s.

This would toss the rock into a 113,000 kilometer by 1,110,000 kilometer elliptical orbit about the earth. A .13 km/s apogee burn will boost perigee by about 180,000 kilometers. This path will take about two months so when the asteroid falls back, the moon will there to provide another gravity assist. This new gravity assist will boost the perigee as well as apogee. The new ellipse is a 311,000 x 1,500,000 km ellipse.

Doing a .08 km/s burn a little after apogee would put the rock into a 450,000 km by 1,800,000 km. This ellipse's perigee matches the altitude and speed of EML2.

With the gravity assist from the moon, the second phase takes a total of about .21 km/sec.

Total Delta V

With .04 km/s to nudge the heliocentric orbit and .21 km/s to park the asteroid at EML2, total delta V is around .25 km/sec.

Can Ion Engines Do The Burns? 

I've called for burns at the asteroid's perihelion, aphelion, and a plane change 84º from the node. Also high apogee burns after the rock's been captured to earth's orbit. Do these need high thrust impulsive burns or can ion engines do the job?

Heliocentric and high earth orbits have a much more leisurely angular velocity than low earth orbit.

LEO angular velocity is about 4 degrees per minute. In earth's neighborhood, low eccentricity heliocentric orbits are about 1 degree per day.  LEO orbits have around 6000 times the angular velocity. A 5 minute burn in LEO scaled up to heliocentic proportions would take around 20 days.

Doing a velocity change of 20 meters/sec over 20 days is an acceleration of about .000012 meters/sec2 . To accelerate a 500 tonne rock this much, we'd need a thrust of about 5 newtons.

The Keck study for retrieving an asteroid calls for 5 10 kW Hall thrusters, of which 4 would operate at a given time. According to this Nasa page, a 10 kW Hall Thruster gives about half a newton. Four engines would give two newtons.

It's plausible higher thrust ion engines will be developed in the future. It's also possible the nudges to the heliocentric orbit could be done over several orbital periods.

How about the burns needed once in earth's sphere of influence?

At a 1,500,000 km apogee, the rock is moving about .6 degrees a day.

A burn over 20 degrees would take about 34 days. A .13 km/s burn would be an acceleration of .00001 meters a second. Accelerating a 500 tonne rock this much would take about 5 newtons.

If the last ellipse is allowed to return to apogee, it is likely the sun's influence would tear the asteroid loose from earth's capture orbit.  1,500,000 km is the outer edge of the earth's sphere of influence.

If I understand the Keck pdf correctly, they give .17 km/s as the delta V to return a 500 tonne rock, and they say the 5 10 kW Hall thrusters are up to the task. There are some very clever people contributing to that paper and it is likely they've come up with more effective lunar assists then mine. But until I have a better understanding, I'll say 2008 HU4 is .25 km/s from EML2 and retrieving a 500 tonne rock takes 5 newtons of thrust.

How many rocks can be caught? 

2008 HU4 is near the very top of the list of low delta V asteroids. How many other rocks could be grabbed as easily?

In general smaller bodies are more common than larger bodies. If we successfully expanded our asteroid inventory to include most the asteroids 5 meters or greater, we would probably know of 100s or even 1000s of asteroids just as catchable as 2008 HU4.

It is the aim of Planetary Resources to take just such an inventory. They plan to launch a fleet of orbital Arkyd telescopes to accomplish this task.

It's likely rocks fall into temporary earth capture orbits without human intervention. New Scientist says any given time we could have several captured asteroids as tiny moons.

I applaud the efforts of Planetary Resources and Deep Space Industries. Their goals are doable. I'm also pleased NASA has expressed an interest in the Keck Study. Hopefully NASA will award PR and DSI contracts. In the near term I'm hoping NASA will buy time on the Arkyd Telescopes to get a more complete inventory of Chelyabinsk sized rocks.